淺議平面向量的教學設計

論文類別:理學論文 > 數學論文
論文標簽:平面設計論文
論文作者: 江露維
上傳時間:2012/8/28 11:46:00

    向量的基礎知識較多,且与其他很多部分知識都有聯系,如向量與函數的聯系、向量與三角函數的聯系、向量與立體幾何的聯系、向量與解析幾何的聯系等。因此,有必要加強對向量這一章節的進一步研究和總結。
  一、從運算的角度來講,向量可分為三種運算
  (一)幾何運算
  本章教材給出了三角形法則,平行四邊形法則,多边形法則。利用這些法则,可以很好地解決向量中的几何運算問題,從中去體会數形結合的數學思想。
  (二)代數运算
  1、加法、減法的運算法则;2、實數與向量乘法法則;3、向量數量積運算法則。
  (三)坐標運算
  在直角坐標系中,向量的坐標運算有加、減、數乘運算、數量積運算。通過向量的坐標運算將向量的幾何运算與代數運算有機結合起來,充分体現了解析幾何的思想,讓學生初步利用"解析法"來解決實際問題,也為以後學习解析幾何及立體幾何相關知識打下了基礎,作好了鋪垫。
  二、教學内容 、要求、重點與難点
  (一)本章教學內容可分成兩塊:第一向量及其運算,第二解斜三角形。
  1、 平面向量基本知识,向量運算。具體教學內容有: 向量(5.1節)、向量的加法與減法(5.2節)、實數与向量的積(5.3節)、平面向量的數量積及運算律(5.6節)。
  2、 平面向量的坐標運算, 聯結幾何運算與数量運算的橋梁。具体教學內容體有: 平面向量的坐標運算(5.4節), 向量加減運算、實數與向量的積運算、平面向量的數量積的坐標表示(5.4節、5.7節)。
  3、 平面向量的應用, 具體教學內容有:線段的定比分点(5.5節),平移(5.8節),正弦定理, 余弦定理(5.9節),解斜三角形應用舉例(5.10節),實習作業。
  (二)教學要求
  1、理解向量的概念,掌握向量的幾何表示,了解共线向量的概念。
  2、掌握向量的加法和減法。
  3、掌握實數與向量的積,理解兩個向量共線的充要條件。
  4、了解平面向量的基本定理,理解平面向量的坐標的概念,掌握平面向量的坐標運算。
  5、掌握平面向量的數量積及其几何意義,了解用平面向量的數量積可以處理有關長度、角度和垂直的問題,掌握向量垂直的條件。
  6、掌握平面兩點間的距離公式以及線段的定比分點和中點坐標公式,並能熟練運用;掌握平移公式。
  7、掌握正弦定理、余弦定理,並能初步運用它們解斜三角形。
  8、通過解三角形的應用的教學,繼續提高運用所學知識解決實際问題的能力。
  (三)教學重點
  向量的幾何表示,向量的加、減運算及實數與向量的積的運算,平面向量的數量積,向量的坐標運算,向量垂直的條件,平面兩點間的距離公式及線段的定比分點和中點坐標公式,平移公式,正、余弦定理。 免費論文下載中心 http://www.hi138.com   (四)教學難點
  向量的概念,向量運算法则及幾何意義的理解和應用,解斜三角形等。
  三、本章的特點
  教材編排的特點決定了在教學中處理本章時,有別於其它章節。
  1、教材在本章處理上,充分體現了數形結合的思想。 首先教材通過求小船由A地到B地的位移來引入向量,根据學生思維特點,由具體到抽象,以平面幾何知識為背景。在概念、法則及例題的編輯上都盡量配了圖形,並安排了較多的作圖練習、看圖練習及作圖驗證練習等,為學生積極參与教學活動提供了條件,為發揮學生学習的主體作用提供了條件,這樣既抓住了平面向量的特点,又使學生通過操作性練習達到對新概念的理解。其次,本章各節的例題、练習、習題等配備量適中,可以使教學有較充分的自主空間,為教學提供了師生互動的空間,為學生提供了探究、发現與歸納的機會, 也為教師根據教學目標,對教材進行再加工提供了可能。2、利用"向量法"解決實際問題是本章的顯著特點之一。向量與几何之間存在著密切聯系;向量又有加、減、數乘積及數量積等運算,也有平面向量的坐標運算,因而向量具有幾何和代數的雙重屬性,能聯系幾何與代數,從而給了我们一種新的數學方法——向量法; 向量法能將技巧性解題化成算法性解題,正、余弦定理的推導就采用了向量法,為以後學習解析幾何與立體幾何打下了基礎。
  4、強化數學能力是本章的另一顯著特點。由於本章的向量法的精髓就是将技巧性解題思路化成算法性解題思路;利用所學知識解決實際問題的能力作為本章的重要教學要求;為了更好地培養學生應用数學知識解決實際問題的能力和實际操作能力, 教材還安排了"實習作業", 通過實際測量, 使學生能運用正、余弦定理來解決實際問題,既体現了數學的工具作用和應用性,又從另一個方面促進了學生對知識的理解與掌握。 以此來強化學生根據法則、公式進行正确運算、變形和數據處理;能根據問題的條件和目標,尋找与設計合理、簡捷的運算途徑;能根據要求對數据進行估計和近似計算,即運算能力。以此來強化學生能綜合应用所學數學知識、思想和方法解決問題,能理解對問題陳述的材料,並對所提供的信息資料進行歸納、整理和分類,將實際問題抽象為數學問題,建立數學模型;能應用相關的數學方法解決問題並加以驗证,並能用數學語言正確地表述和說明,即實踐能力。
  四、教學體會
  依據教學內容、要求及本章的特点,根據學生認知水平和近幾年的教學實踐,對"平面向量"教学有如下的教學體會:
  1、認真研究《考試大綱》及教學要求和目標,分析本章節特點,根據學生原有知識結構對學習本章可能会產生的正負遷移作用,有针對性地設計教學計划,組織教學過程,做好學法指导。
  2、在教學中重基礎知識,重基本方法,重基本技能,重教材,重應用,重工具作用,不拔高,不選偏題和難題,遵循學生認知規律和按大綱要求进行。
  3、抓住向量的數形結合和具有幾何與代数的雙重屬性的特點,提高"向量法"的運用能力,充分发揮工具作用。在教學中引導学生理解向量怎樣用有向线段來表示,掌握向量的三種運算,理解向量運算和實數運算的聯系和區別,強化本章基础。
  4、利用解三角形的應用問題,結合教學過程进行數學建模的訓練,要引導学生識記、區分和理解正、余弦定理的應用範围,會對公式進行變形;在運用公式解三角形時,會分類討論三角形類型;指導學生在解三角形時掌握正、余弦定理的選用與尋找合理、簡捷的運算途徑的關系,總結出解與三角形有關的應用问題
  5、強化數形結合的思想,化歸的思想,分類與討論的思想,方程的思想等;加強學生運算能力的培養和提高。引導学生理解本章平移知識與函數圖像平移的聯系和區別;理解解三角形與三角函數的聯系;註意區分两向量的夾角與直線的夾角概念。 免費论文下載中心 http://www.hi138.com
下载论文

論文《淺議平面向量的教學設計》其它版本

數學論文服務

網站聲明 | 聯系我們 | 網站地圖 | 論文下載地址 | 代寫論文 | 作者搜索 | 英文版 | 手機版 CopyRight@2008 - 2017 免費論文下載中心 京ICP备17062730号