冷原子幹涉儀及空間應用

論文類別:理學論文 > 物理學論文
論文作者: 李潤兵 詹明
上傳時間:2008/11/14 8:55:00

摘 要 原子幹涉儀是利用原子物質波的特性而實現的幹涉儀,冷原子具有很小的速度和速度分布以及良好的相幹性,因而冷原子幹涉儀具有很高的靈敏度.文章介紹了原子幹涉儀的基本物理原理、國內外研究進展、原子幹涉儀實現方案及其在精密測量和空間科學領域中的應用.
關鍵詞 冷原子,原子幹涉儀,慣性測量
  
  Abstract Atom interferometers are based on the matter wave feature of atoms. Cold atoms have low velocity, small velocity distribution and good coherence, thus cold atom interferometers display excellent sensitivity. In this paper, we describe the basic principle, recent progress, realization schemes and space applications of cold atom interferometers.
  Keywords cold atom, atom interferometers, gravity measurement
  
  1 引言
  
  波的幹涉是自然界的本質特性.光是一種電磁波,光的幹涉現象早已被人認識.根據量子理論,任何微觀粒子(如電子、中子、原子、分子)都具有波粒二象性,微觀粒子的波動性(稱為物質波或德布羅意波)由波函數描述,服從薛定諤方程.物質波同樣滿足線性疊加原理,具有相幹性.自從1991年實現了脈沖式原子幹涉儀以來[1],原子幹涉儀在精密測量領域得到了廣泛的應用,典型的應用有重力加速度測量和重力梯度測量[2,3],旋轉速率測量和地球自轉速率的測量[4,5,6],牛頓引力常數的測量[7—10]以及精細結構常數的測量[11]等.利用原子幹涉儀驗證等效性原理[12,13]以及原子幹涉儀在空間應用已經引起關註[14,15].
  原子幹涉儀基於物質的波動特性,實質是對原子波包的相幹操作.將原子波包相幹地分束和合束後形成兩個或者多個路徑,觀察這些不可區分路徑即產生幹涉條紋.操作原子波包的方式有激光駐波形成的衍射光柵結構[16]和受激拉曼光相幹分束原子等.由於原子物質波具有與光波不同的內稟特性,基於原子幹涉的原子陀螺儀和原子加速度計,可達到的靈敏度遠高於激光陀螺儀或激光加速度計.理論上分別求解光波波動方程和物質波的薛定諤方程,可得到同等環路面積條件下,原子陀螺儀與光學陀螺儀靈敏度的比值為Rgyro=mc2hν=λλdeBcv ,(1)其中c為真空中光速,λ是光波波長,ν是光頻率,υ為原子的運動速度, m是原子的質量,λdeB=h/mυ是原子的德布羅意波波長.因為λdeB λ,且υ  c,故在典型條件下,Rgyro ~ 1010,即原子陀螺儀的內稟靈敏度可比同面積的激光陀螺儀高10個量級.這是由於物質波波長遠小於可見光的波長,所以與激光幹涉儀相比,原子幹涉儀對更小的變化更靈敏;又由於原子的運動速度遠慢於光速,因此在原子陀螺儀中,原子飛越相同的幹涉路程時將經歷更長時間的轉動,從而產生更大的條紋移動.類似的分析發現,原子加速度計的內稟靈敏度與光學的比值為Raccel=2mc2hνcv=2λλdeB(cv)2 .(2)在典型條件下,該比值達1017.
  原子幹涉的歷史要追溯到20世紀初期,1924年,Hanle在原子蒸汽中研究了持續幾十個納秒的原子相幹疊加態[17],隨著原子束技術的發展,Stern-Gerlach磁場被用來選擇和保存原子在特定的量子態中,1938年,Rabi采用射頻共振技術實現了原子內部量子態的改變[18].1949年,Ramsey實現了較長時間原子內部量子態的相幹疊加,用分離振蕩場技術實現原子內部量子態的相幹操作,為實際應用帶來重大變化[19],典型應用有原子頻率標準,核磁共振波譜和量子信息等.隨著冷原子技術的發展,采用冷原子的原子幹涉儀得到了迅速發展,1991年,朱棣文用受激拉曼脈沖序列對冷原子內部量子態操作,使原子波包相幹分束、反射和合束,原子外部量子態在波包自由演化後通過原子內部量子態進行測量,實現了受激拉曼躍遷式原子幹涉儀;1997年,朱棣文又用原子陀螺儀實現了轉動的精密測量,精度達到10-8(rad/s)/Hz.法國巴黎大學實現了冷原子自旋-極化幹涉儀.美國耶魯大學繼2000年實現了大面積光-脈沖原子幹涉儀之後,又於2002年利用原子幹涉儀實現了靈敏的重力梯度儀,靈敏度達10-9g /Hz.
  目前國際上靈敏度最高的原子幹涉陀螺儀用熱原子束實現[4,6].熱原子束的優點是原子數多,可以獲得更高的信噪比.從提高靈敏度來講,得到更大的幹涉環路面積需要增加長度或者降低原子速度,熱原子束速度很大,通常為每秒幾百米,冷原子的速度可以精確地控制在每秒幾米左右,在系統集成和小型化方面有著明顯優勢.冷原子陀螺儀通常采用雙環路原子幹涉儀的構型實現[5],其優點在於可將系統小型化,同時可以抑制共模噪聲和方便提取旋轉相移.重力加速度引起的相移為Δ=12(keff×g)·T2,T是拉曼脈沖時間間隔,可以通過降低原子速度來增加相移,因此,冷原子在測量重力加速度方面比熱原子具有明顯的優勢.
  
  2 原子幹涉儀的原理
  
  光或原子的波動與幹涉可由圖1所示的著名的楊氏雙狹縫實驗來演示.這也是原子幹涉儀的基本原理,即不可區分的兩條路徑的幾率振幅疊加的結果將產生幹涉.
  原子幹涉儀的運作一般分為幾個步驟:原子初態制備、原子波包相幹分束、原子波包自由演化、原子波包相幹合束、原子末態探測.下面以拉曼型原子幹涉儀為例,介紹原子幹涉儀的基本物理原理和相關應用.
在原子幹涉儀中,要相幹地對原子波包分束和合束,並保證原子波包在自由演化過程中保持其相幹特性,最初原子幹涉儀設計類似於光波楊氏雙縫幹涉儀實驗[20,21],但用激光對原子產生的力學效應,使原子在吸收或受激輻射光子的同時得到光子反沖動量,使原子波包分束和合束, 用受激拉曼過程對原子波包相幹操作,使原子獲得雙光子反沖動量,從而增加原子幹涉環路的面積,提高原子幹涉儀的靈敏度[22—24].
  
  4 原子幹涉儀在精密測量中的應用
  
  冷原子具有質量和傳播時間長等特征決定了它在精密測量領域有著獨特的優勢.原子幹涉儀作為慣性傳感器可與最好的其他慣性傳感器比擬.利用原子幹涉儀作為慣性傳感器,測量重力加速度的分辨率達到2×10-8(g)/Hz[2],重力梯度儀的分辨率達到4×10-9(g/m)/Hz[3],牛頓引力常數測量不確定度達到±0.003×10-11m3kg-1s-2[9,10],用熱原子束實現原子陀螺儀靈敏度達到1.4×10-10rad/s,偏置穩定度達到7×10-5 (°)/h,短期噪聲達到3×10-5 (°)/h[4,6].冷原子陀螺儀的靈敏度在10 min平均時間達到1.4×10-7rad/s[5] .
  
  5 原子幹涉儀空間應用
  
  美國斯坦福大學、麻省理工學院等研究單位對原子陀螺儀進行了深入的科學研究,美國宇航局(NASA)啟動了空間原子重力梯度儀研制計劃,用以精密測量地球重力場.歐洲空間局(ESA)啟動了HYPER(hyper-precision cold atom interferometry in space)計劃,該計劃首次用原子幹涉儀作為加速度和轉動的傳感器來控制飛船(與衛星定位系統連用), 同時進行重力磁效應和量子重力的科學研究,包括精細結構常數的測量和物質波相幹等實驗[15].

免費論文下載中心 http://www.hi138.com

  HYPER的第一個衛星使命是用冷原子幹涉儀作為慣性傳感器控制飛船,用4個原子幹涉儀組成2個雙環路原子陀螺儀測量2個正交方向的加速度和旋轉,通過激光控制原子的速度,使2個原子陀螺儀工作在不同模式:粗測和細測.粗測的靈敏度為10-9rad/s ,用作姿態和軌道控制系統(AOCS);細測的靈敏度為10-12rad/s ,用來測量引力效應.HYPER對精細結構常數獨立測量不依賴於量子電動力學,預計提高一個量級,用於比較量子電動力學的結果,HYPER將進行引力實驗來檢驗廣義相對論的時空彎曲和進行量子引力實驗.
  
  6 小結
  
  利用原子幹涉儀可進行精密物理測量,例如:轉動、加速度、加速度梯度等.因而,原子幹涉儀在導航定位、地下掩體探測、探礦找油等方面有廣泛的應用前景.
  原子幹涉儀性能的進一步提高將受到兩方面的限制:(1) 由於重力的影響,原子飛行的時間有限,飛行路徑包含的面積較小,難以進一步提高靈敏度;(2)在原子動量起伏較大的情況下,不能將原子束等比例地分離到兩個路徑上,降低了幹涉條紋的對比度.因此,除了改善現有原子幹涉儀的方案之外,發展全新的技術來解決以上兩方面的問題是原子幹涉儀未來的主要發展趨勢.這包括改善原子束源和尋找操縱原子的新方法.在原子束源方面,采用玻色-愛因斯坦凝聚體進行原子幹涉儀研究,可以比采用一般磁光阱中的冷原子具有更長的相互作用時間和更好的信噪比.在原子操縱方面,原子微結構磁囚禁和導引可以極大地提高人們對原子的操縱能力,有利於發展小型化原子幹涉儀.
  
  參 考 文 獻
  [1]Kasevich M, Chu S. Phys. Rev. Lett., 1991,67:181
  [2]Peters A, Chung K Y, Chu S. Nature, 1999, 400:894
  [3]McGuirk J M, Foster G T, Fixler J B et al. 2002, Phys. Rev. A, 65:033608
  [4]Gustavson T L,Landragin A, Kasevich M A. Class. Quantum Grav., 2000, 17:2385
  [5]Canuel B, Leduc F, Holleville D et al. Phys. Rev. lett., 2006, 97:010402
  [6]Durfee D S, Shaham Y K, Kasecich M A. Phys. Rev. Lett., 2007,97:240801
  [7]Fixler J B, Foster G T, McGuirk J M et al. Science, 2007, 315:5808
  [8]Bertoldi A, Lamporesi G, Cacciapuoti L et al. Euro. Phys. J. D, 2006, 40: 271
  [9]Lamporesi G , Bertoldi A, Cacciapuoti L et al. Phys. Rev. Lett., 2008,100:050801
  [10]Muller H, Chiow S, Herrmann S et al. Phys. Rev. Lett., 2008, 100:031101
  [11]Weiss D S, Young B C, Chu S. Appl. Phys. B, 1994, 59:217
  [12]Fray S, Diez C A, Hansch T W et al. Phys. Rev. Lett., 2004, 93:240404.
  [13]Dimopoulos S , Graham P W, Hogan J M et al. Phys. Rev. Lett., 2007, 98:111102
  [14]Lee M C, Israelsson U E. Physica B, 2003, 329:1649
  [15]Jentsch C, Muller T, Rasel E M et al. Gen. Rel. Grav., 2004, 36:2197
  [16]Delhuille R, Champenois C, Buchner M et al. App. Phys. B,2002,74:489
  [17]Hanle W. Z. Phys., 1924, 30:93
  [18]Rabi I, Sacharias J, Millman S et al. Phys.Rev., 1938, 53:318
  [19]Ramsey N. Phys. Rev., 1949, 76:996
  [20]Carnal O, Mlynek J. Phys. Rev. Lett.,1991, 66:2689
  [21]Shimizu F, Shimizu K, Takuma.Proc. SPIE, 1992, 1726:193
  [22]Kasevich M, Chu S. Appl. Rev. B., 1992, 54:321
  [23]Petelsk T. Atom Interferometers for Precision Gravity Measurements, Ph. D. thesis, University of Florence, Florence, 2002
  [24]Gustavson T L. Precision measurement using atom interferometer, Ph.D. thesis, Stanford University, Palo Alto, CA, 2000
  [25]Moler K, Weiss D S, Kasevich M et al. Phys. Rev. A, 1992, 45:342
  [26]Li R B, Wang P, Yan H et al.Phys. Rev. A, 2008, 77:033425
  [27]Wang P, Li R B, Yan H et al. Chin. Phys. Lett., 2007, 24:27
  [28]Zhan M S et al. J. Phys. Coference Series, 2007, 80:012047,
  [29]Wang J, Liu X J, Li J M et al. Chin. J. Quantum Electronics, 2000, 17:44
  [30]Jiang K J, Li K, Wang J et al. Chin. Phys. Lett., 2005, 22:324
  [31]Peters A, Chung K Y, Chu S. Metrologia, 2001, 38:25
  [32]Snadden M J, McGuirk J M, Bouyer P K. Phys. Rev. Lett.,1998, 81:971

免費論文下載中心 http://www.hi138.com
下载论文

論文《冷原子幹涉儀及空間應用》其它版本

物理學論文服務

網站聲明 | 聯系我們 | 網站地圖 | 論文下載地址 | 代寫論文 | 作者搜索 | 英文版 | 手機版 CopyRight@2008 - 2017 免費論文下載中心 京ICP备17062730号